Math 101 Review on Graphs and Geometry

Learning Goals

☐ (GR-1) Distances, midpoints, and geometric shapes
I know the distance formula and can apply it when appropriate. I know the midpoint formula and can apply it when appropriate. I know and can apply geometry formulas related to squares, triangles, circles, boxes, spheres, and right circular cylinders. I can use the Pythagorean Theorem and its converse.

☐ (GR-2) Graphs of equations, intercepts and symmetry
I can test an equation for symmetry with respect to the x-axis, the y-axis, and the origin. I can identify symmetry from a graph or complete a graph so that it has a given type of symmetry. I can quickly and accurately graph each of the following basic equations, describing any intercepts or symmetry: $y = x^2, y = x^3, y = x, y = \frac{1}{x}, y = \sqrt{x}, x = y^2, y = |x|$. I can graph functions of the form $f(x) = k, f(x) = x, f(x) = x^2, f(x) = \sqrt{x}, f(x) = \sqrt{x}, f(x) = \frac{1}{x}$, and $f(x) = |x|$. I can graph piecewise-defined functions and I can determine the equation given the graph of a piecewise-defined function.

☐ (GR-3) Graphs of lines and systems of lines
I can find the equation of a line given its slope and a point. I can find the equation of a line given its slope and its y-intercept. I can find the equation of a line given two points on the line. I can find equations of parallel lines and perpendicular lines. I can write the equation of a line in slope-intercept form, standard form, and point-slope form. I can graph a line. I can identify the slope and y-intercept of a line from its equation or graph. I can solve systems of linear equations in two variables by substitution and I can solve systems of linear equations in two variables by elimination. I can identify inconsistent systems of equations in two variables and I can express the solution of a system of dependent equations containing two variables.

☐ (GR-4) Circles
I can convert between standard form and expanded form for the equation of a circle. Given its properties, I can graph a circle and find its equation. I can find x-intercepts and y-intercepts found on the graph of a circle.

Review Problems

1. For the following right triangle, find the side of length x. Simplify your answer.

![Right Triangle Diagram]

2. Find the exact area of a circle of radius 5 feet.

3. Graph the line $x - y = -4$.

4. Graph the line with slope -1 passing through the point $(-1, -2)$.

5. Graph the line with slope \(m = -3 \) and \(y \)-intercept \(b = -1 \).

6. Find an equation for the line going through \((-1, -1)\) and \((3, 1)\).

7. A line passes through the point \((2, -4)\) and has a slope of 4. Write an equation in point-slope form for this line.

8. Calculate the distance between the points \(F = (1, -6) \) and \(J = (7, -1) \) in the coordinate plane. Give an exact answer.

9. Find the slope, the \(x \)-intercept(s), and the \(y \)-intercept(s) of the line \(5x + 3y = -12 \). Write the line’s equation in slope-intercept form.

10. Find the midpoint \(M \) of the line segment joining the points \(A = (-7, 6) \) and \(B = (-1, -4) \).

11. Consider the line \(4x - 7y = -8 \).

 (a) Find the equation of the line that is perpendicular to this line and passes through the point \((4, -4)\).

 (b) Find the equation of the line that is parallel to this line and passes through the point \((4, -4)\).

12. Find an equation of the circle that has center \((-2, -6)\) and passes through \((2, 2)\).

13. Find the slope and the \(y \)-intercept of the line \(8x - 4y = 7 \). Simplify your answers.

14. Write equations for the vertical and horizontal lines passing through the point \((-4, 3)\).

15. For each pair of points, find the slope of the line passing through them. If the slope is undefined, write “undefined.” Simplify your answers.

 (a) \((-7, 6)\) and \((-9, 8)\)

 (b) \((-5, 2)\) and \((6, 2)\)

 (c) \((-5, 4)\) and \((-5, -5)\)

16. The equation of a circle is \(x^2 + y^2 - 8x + 2y = -13 \). Identify its radius and center.

17. Find an equation of the circle whose diameter has endpoints \((-6, -4)\) and \((2, -1)\).

18. For each ordered pair below, determine whether it is a solution to the system of equations.

\[
\begin{align*}
\begin{cases}
 y = 2x + 8 \\
 4x - 2y = -16
\end{cases}
\end{align*}
\]

\[
\begin{array}{ccc}
(x, y) & \text{Yes} & \text{No} \\
\hline
(0, -7) & & \\
(5, -3) & & \\
(-3, 2) & & \\
(5, 18) & & \\
\end{array}
\]

19. Solve each system.

(a) \[
\begin{cases}
 3x + 2y = -6 \\
 x - 3y = -13
\end{cases}
\]

(b) \[
\begin{cases}
 -9x - 5y = 4 \\
 -4x - 9y = -5
\end{cases}
\]

(c) \[
\begin{cases}
 x - 4y = -8 \\
 4y = x + 8
\end{cases}
\]

(d) \[
\begin{cases}
 -x + 2y = -4 \\
 x - 2y = -4
\end{cases}
\]
20. Identify the center and radius of the circle $x^2 + y^2 - 4x + 6y = -3$. Also, find the x-intercept(s) and the y-intercept(s) found on its graph, if any.

21. Determine whether the equation has a graph that is symmetric with respect to the y-axis, the x-axis, the origin, or none of these.

 (a) $y = 3x^2 + 4$
 (b) $x^2 - y^2 = 4$
 (c) $y = (x - 6)(x - 6)$
 (d) $x = y^2 - 16$

22. Draw a complete graph so that it has the type of symmetry indicated.

 (a) y-axis
 (b) x-axis
 (c) origin

23. Find $f(0)$, $f(8)$, and $f(11)$, where $f(x)$ is the piecewise-defined function

 $$f(x) = \begin{cases}
 8x + 1, & \text{if } x < 1 \\
 8x, & \text{if } 1 \leq x < 11 \\
 8 - 5x, & \text{if } x \geq 11
 \end{cases}$$

24. Graph the function $f(x) = \begin{cases}
 -3, & \text{if } x \geq 1 \\
 -5 - x, & \text{if } x < 1
 \end{cases}$

25. Graph the function $f(x) = \begin{cases}
 x^3, & \text{if } x < 1 \\
 -2 + x, & \text{if } x \geq 2
 \end{cases}$

26. The graph of a piecewise-defined function is given. Write its equation.
Answers

1. \(x = 12 \)

2. Area: \(25\pi \) square feet

3. \(y = x + 4 \)

4. \(y = -1x - 3 \)

5. \(y = -3x - 1 \)

6. \(y = \frac{1}{2}x - \frac{1}{2} \)

7. \(y + 4 = 4(x - 2) \)

8. \(\sqrt{61} \)

9. x-int: \(\left(\frac{12}{5}, 0 \right) \), y-int: \((0, 4) \), \(y = -\frac{5}{2}x + 4 \)

10. \(M = (-4, 1) \)

11. (a) \(7x + 4y = 12 \), (b) \(4x - 7y = 44 \)

12. \((x + 2)^2 + (y + 6)^2 = 80 \)

13. slope: \(m = 2 \), int: \(b = -7/4 \)

14. vertical: \(x = -4 \), horizontal: \(y = 3 \)

15. (a) \(m = -1 \), (b) \(m = 0 \), (c) undefined

16. \(r = \sqrt{30}, C = (4, -1) \)

17. No, no, yes, yes

18. (a) \(-4, 3 \) , (b) \(-1, 1 \) , (c) \((t, \frac{1}{4}t + 2) \) where \(t \) is any number, (d) No solution

19. Center: \(C = (2, -3) \), radius: \(r = \sqrt{10} \). x-int: \((1, 0), (3, 0) \), y-int: \((0, -3 \pm \sqrt{6}) \)
20. (a) y-axis, (b) x-axis, y-axis, origin, (c) none, (d) x-axis

21. (a) y-axis (b) x-axis (c) origin

Graphs:

22. $f(0) = 1$, $f(8) = 64$, $f(11) = -47$

23. Graph the function $f(x) = \begin{cases} -3, & \text{if } x \geq 1 \\ -5 - x, & \text{if } x < 1 \end{cases}$ Graph the function $f(x) = \begin{cases} x^3, & \text{if } x < 1 \\ -2 + x, & \text{if } x \geq 2 \end{cases}$